Singular Perturbations for a Class of Degenerate Parabolic Equations with Mixed Dirichlet-Neumann Boundary Conditions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary Estimates for a Degenerate Parabolic Equation with Partial Dirichlet Boundary Conditions

We study the boundary regularity properties and derive pointwise a priori supremum estimates of weak solutions and their derivatives in terms of suitable weighted L-norms for a class of degenerate parabolic equations that satisfy homogeneous Dirichlet boundary conditions on certain portions of the boundary. Such equations arise in population genetics in the study of models for the evolution of ...

متن کامل

INFINITELY MANY SOLUTIONS FOR A CLASS OF P-BIHARMONIC PROBLEMS WITH NEUMANN BOUNDARY CONDITIONS

The existence of infinitely many solutions is established for a class of nonlinear functionals involving the p-biharmonic operator with nonhomoge- neous Neumann boundary conditions. Using a recent critical-point theorem for nonsmooth functionals and under appropriate behavior of the nonlinear term and nonhomogeneous Neumann boundary conditions, we obtain the result.

متن کامل

A note on critical point and blow-up rates for singular and degenerate parabolic equations

In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...

متن کامل

Boundary Conditions for Singular Perturbations

Let A : D(A) H ! H be an injective self-adjoint operator and let : D(A) ! X, X a Banach space, be a surjective linear map such that k k X c kAAk H. Supposing that Range (0) \ H 0 = f0g, we deene a family A of self-adjoint operators which are extensions of the symmetric operator A jf =0g. Any in the operator domain D(A) is characterized by a sort of boundary conditions on its univocally deened r...

متن کامل

A Posteriori Error Estimation for the Poisson Equation with Mixed Dirichlet/Neumann Boundary Conditions

The present work is devoted to the a posteriori error estimation for the Poisson equation with mixed Dirichlet/Neumann boundary conditions. Using the duality technique we derive a reliable and efficient a posteriori error estimator that measures the error in the energy norm. The estimator can be used in assessing the error of any approximate solution which belongs to the Sobolev space H, indepe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales mathématiques Blaise Pascal

سال: 2003

ISSN: 1259-1734

DOI: 10.5802/ambp.177